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a b s t r a c t

The paper presents the complex variables-based approach for analytical evaluation of three-dimensional
integrals involved in boundary integral representations (potentials) for the Helmholtz equation. The
boundary element is assumed to be planar bounded by an arbitrary number of straight lines and/or
circular arcs. The integrals are re-written in local (element) coordinates, while in-plane components of
the fields are described in terms of certain complex combinations. The use of Cauchy–Pompeiu formula
(a particular case of Bochner–Martinelli formula) allows for the reduction of surface integrals over the
element to the line integrals over its boundary. By considering the requirement of the minimum number
of elements per wavelength and using an asymptotic analysis, analytical expressions for the line
integrals are obtained for various density functions. A comparative study of numerical and analytical
integration for particular integrals over two types of elements is performed.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

This paper extends the complex variables-based integration
technique recently developed for three-dimensional potential and
elastostatic problems [14] to three-dimensional acoustic scattering
problems described by the Helmholtz equation in frequency domain.
It is well-known that the solutions of the latter problems can be
represented by certain integrals, or combinations of integrals, over
the boundary of the domain of interest, see e.g. [1,5,7]. The unknown
fields in such representations can be found by solving the so-called
boundary integral equations. The Boundary Element Method (BEM),
see e.g. [1,5,9], is a numerical technique for solving these equations.
The technique leads to the discretized equations that involve the
integrals over the boundary elements used to approximate the
boundaries of the simulation domains. Analytical evaluation of the
integrals is an attractive option since it leads to higher accuracy of
the computation and to the reduction of its cost. This may also
facilitate the use of fast methods [11,20] and can be utilized (along
with other methods such as cubature method and nonlinear reg-
ularizing transformations, e.g. see [16]) to form a robust framework
for evaluation of BEM integrals in a more general context.

Closed-form results for the integrals involved in integral repre-
sentations of the potential and elasticity theories are reported in
many publications, especially for two-dimensional problems with
straight elements [3,10,13,22] and for three-dimensional problems
with triangular and rectangular elements [2,12,15,17,18,21,23,24].
However, only few papers report analytical results for the BEM
integrals in acoustic scattering. One of such papers [8] presents a
semi-analytical approach to evaluate singular and near singular
double integrals involved in Galerkin formulation for the Helmholtz
equation. The method employs constant approximations for the basic
functions and uses triangular boundary elements (in coplanar or
parallel planes). Analytical expressions for these integrals are pro-
vided for the singular parts of the Helmholtz Green's functions that
coincide with the kernels of a single- and double-layer potentials of
the Laplace equation, while numerical integration is used for the
remaining dynamic part. The method is based on an integration
formula for homogeneous functions that reduce an integral over an
N-dimensional domain into an integral over its boundary.

The analytical approach presented in [25] (for 3D wave propaga-
tion) and in [26] (for transient heat conduction) also deals with
singular and hypersingular BEM integrals over planar elements. The
approach employs rectangular elements and constant approxima-
tions for the unknowns and relies on the Fourier series representa-
tion for the Helmholtz fundamental solution. It is shown that the
method leads to satisfactory results, however, the minimum required
number of terms in the Fourier expansion may become large or
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sensitive to some specific parameters. Also, the possibility of spatial
contamination can be another drawback of the method.

Another somewhat relevant paper [28] reports analytical
expressions for moment integrals in the diagonal fast multipole
BEM to solve 3-D acoustic wave problems. The paper also employs
constant approximation for the unknowns and triangular elements.

In the present paper we use the complex variables-based tech-
nique proposed in [14] to evaluate three-dimensional integrals in the
BEM formulations related to the Helmholtz equation. The technique
is based on the complex integral representations that reduce the area
integrals to those over the element contour. To use these representa-
tions, various complex combinations of in-plane fields and geome-
trical parameters are formed. For polynomial approximations of
density functions in the BEM formulations, the procedure allows
for analytical integrations of all integrals (regular, singular, and
hypersingular) over planar elements bounded not only by straight
lines but also by circular arcs (and, possibly, by other simple curves).

The structure of the paper is as follows. In Section 2, we present
real variables-based integral representations involved in typical BEM
formulations for the Helmholtz equation. In Section 3, we review
various complex notations for geometry and fields and introduce
generic complex integral. In Section 4, this integral is reduced to a
contour integral using Cauchy–Pompeiu integral representation. In
Section 5, the closed form expressions for this integral over a straight
segment and a circular arc are presented. In Section 6, comparative
analyses of numerical and analytical integration for particular integrals
over elements of two types are performed. The outcome of the present
study is summarized in Section 7 and its implications are discussed.

2. Integral representations of acoustic scattering in R3

The time-harmonic scalar wave propagation is governed by the
following Helmholtz equation:

Δuþk2u¼ 0; u¼ uðx;ωÞ ¼ Re½uðxÞe� iωt �; k¼ω=c; ð1Þ

where u is the scalar field variable that is a function of position
xAR3 and frequency ω, k is the wave number, and c is the
medium's sound speed. The typical boundary element method
formulations in acoustics involve the following integrals over the
boundary, e.g. [1–3]:

� Single-layer potential

Z
S

1
4πr

vðζÞeikr dSζ ; ð2Þ

� Double-layer potential

Z
S
wðζÞ ∂

∂nðζÞ
1

4πr
eikr

� �
dSζ ; ð3Þ

� Adjoint double-layer potential

∂
∂nðxÞ

Z
S

1
4πr

vðζÞeikr dSζ ; ð4Þ

� Hypersingular potential

∂
∂nðxÞ

Z
S
wðζÞ ∂

∂nðζÞ
1

4πr
eikr

� �
dSζ ; ð5Þ

where r¼ jζ�xj is the distance between the boundary point ζAS
and the field point xAR3; nðζÞ denotes the unit normal vector to
the boundary at the point ζ , while nðxÞ is the normal vector to
some plane containing the point x; the two scalars vðζÞ and wðζÞ
are the so-called density functions. Eq. (1) is automatically
satisfied when u is described by one of the expressions of
Eqs. (2)–(5), or their linear combinations.

3. Generic integral involved in potentials (2)–(5)

With reference to Fig. 1, S is a planar boundary element
consisting of a regular domain bounded by a piece-wise smooth
and oriented contour ∂S that does not intersect itself. The element
(local) coordinates are indicated by ðζ1; ζ2; ζ3Þ so that ζ3 is directed
along the normal vector �nðζÞ, whereas ζ1 and ζ2 are in-plane
directions chosen in such a way that ðζ1;ζ2; ζ3Þ is a right handed
coordinate system. Furthermore, assume that z is the projection of
the field point x onto the element's plane. It should be mentioned
that direction of travel on ∂S is assumed to be counter-clockwise.

As in [14], we employ the following complex combinations:

z¼ x1þ ix2; z ¼ x1� ix2;
τ¼ ζ1þ iζ2; h¼ ζ3�x3; ð6Þ
wherein z, z – also τ, τ – are hereafter treated as independent
variables. Using these combinations, the distance r is expressed as
follows:

r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτ�zÞðτ�zÞþh2

q
: ð7Þ

In the following we would also use the Wirtinger calculus,

∂
∂z

¼ 1
2

∂
∂x1

� i
∂
∂x2

� �
;

∂
∂z

¼ 1
2

∂
∂x1

þ i
∂
∂x2

� �
: ð8Þ

The use of Eqs. (6)–(8) and the chain differentiation rule leads
to the following useful interrelations:

r;1 ¼
∂r
∂z

þ ∂r
∂z
; r;2 ¼ i

∂r
∂z

� ∂r
∂z

� �
; r;3 ¼ � ∂r

∂h
; ð9Þ

where r;j ¼ ∂r=∂xj.
In this setting, polynomial approximations of the density func-

tions vðζÞ, wðζÞ result in linear combinations of the terms
ðτ�zÞmðτ�zÞn, e.g. the monomial ðζ1Þ2 transforms to the following

Fig. 1. Planar boundary elements: (a) typical element, (b) triangular element, (c) circular sector.
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expression:

ðζ1Þ2 ¼ 1
4 ½ðτ�zÞ2þðτ�zÞ2þ2ðτ�zÞðτ�zÞ
þ2ðτ�zÞðzþzÞþ2ðτ�zÞðzþzÞþðzþzÞ2�; ð10Þ

in which z, z are treated as parameters. Similar expressions exist for
all other monomials.

Using expressions (6)–(9) and the expressions for the mono-
mial of the types given by Eq. (10), one can show that, in the local

coordinate system of the element S, all integrals involved in Eqs.
(2)–(5) can be reduced to one generic integral of the form (note
that z and z are now interpreted as parameters)Z
S

ðτ�zÞmðτ�zÞn
r

eikr dS; m;n¼ 0;1;…; ð11Þ

and its partial derivatives of various orders with respect to z, z , h,
and k.

4. Evaluation of the generic integral using complex integral
representation

Following [14], we employ the Cauchy–Pompeiu integral repre-
sentation (see e.g. [19,27]) and combine it with the Sokhotsli–
Plemelj formulae for the limiting process as z-z0A∂S. As a result,
the area integral of Eq. (11) can be reduced to the contour integral
as follows (to simplify expressions we excluded the constant wave
number k from the list of parameters):

Imnðz; SÞ ¼
Z
S

τ�zð Þmðτ�zÞn
r

eikr dS¼
Z
S

1
τ�z

∂f ðτÞ
∂z

dS

¼ 1
2i

Z
∂S

f ðτÞ
τ�z

dτ�
πf ðzÞ; zAS

γf ðzÞ=2; zA∂S
0; z=2S;

8><
>: ð12Þ

where the contour integral is understood as the Cauchy principal
value for zA∂S, and γ is the internal angle of element's edge at
zA∂S such that

γ
2π

¼
1=2 at regular points
0oγkr2 at kth corner point;

(
ð13Þ

and the parameter z is excluded from the list of arguments of the
function f for the sake of simplicity.

The function f ðτÞ of Eq. (12) can be represented as follows:

∂f ðτÞ
∂z

¼ ðτ�zÞmþ1ðτ�zÞn
r

eikr : ð14Þ

In cases of constant, linear, and quadratic approximations of
density functions, f τð Þ of Eq. (14) can be expressed in the following
closed form:

The free term on the right-hand side of Eq. (12) is evaluated by
substituting τ¼ z in Eq. (15). Some examples are provided in
Appendix A.

In this setting, we study the possibilities for analytical integra-
tion of the contour integral of Eq. (12) over the elements whose
boundary ∂S consists of various combinations of straight segments
or circular arcs.

5. Analytical integration for planar elements

5.1. Straight boundary segment

The complex representation of a straight segment with end
points denoted by a¼ a1þ i a2 and b¼ b1þ i b2 (see Fig. 2(a))
results in the following expression for the conjugate variable τ
(see [10,13,14]):

τ ¼ aþDabðτ�aÞ; ð16Þ

where

Dab ¼
b�a
b�a

:

This allows for the description of the distance r in terms of the
single variable τ

r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτ�zÞðDabðτ�zÞþ2dÞþh2

q
; d¼ d1þ id2 ¼ 1

2 ða�z�Dabða�zÞÞ:
ð17Þ

Note that jdj ¼ 0 if zA ½a; b�, and Dab ¼ �d=d if z=2½a; b�.
Eqs. (16) and (17) manifest path-dependency of the line

integrals for non-holomorphic functions. Substitution of Eq. (15)
into the contour integral of Eq. (12) leads to the following integral

Fig. 2. A segment of a boundary element contour: (a) straight line, (b) circular arc.

f ðτÞ ¼

2ik�1ðτ�zÞmeikr ; n¼ 0

2ik�3ðτ�zÞm�1eikr �2þ2ikrþk2ðr2�h2Þ
h i

; n¼ 1

2ik�5ðτ�zÞm�2eikr 24þk �8kh2�24irþkðr2�h2Þðk2ðr2�h2Þþ4ikr�12Þ
� �h i

n¼ 2:

8>>>><
>>>>:

ð15Þ
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over some straight segment a; b
	 


A∂S:

Ipqðz; a; bÞ ¼
Z
ℓab

rpðτ�zÞq eikr dτ; ð18Þ

where ℓab denotes the straight path from the point a to b. It can be
shown by considering Eq. (17) that for constant, linear, and quadratic
approximations, ðp; qÞ are integers such that p¼ 0; 1; �3rqr4.
The last step towards analytical evaluation of the integral of Eq. (18)
stems from the following critical requirement. In order to avoid
aliasing and other sources of wave-field misinterpretation, the boun-
dary of the simulation domain must be discretized considering the

radiation frequency, so that the number of elements per wavelength
is at least five to ten depending on the order of approximation. This
implies that the oscillatory part of the kernel, eikr , in Eq. (18) over the
support [a, b] is a smooth and slowly varying function regardless of
the frequency regime, as the element size scales down with the
wavelength λ¼ 2π=k. Thus, thanks to the BEM discretization, the
asymptotic approximation used in low frequency scattering [4] can be
employed in the general context of arbitrary radiation frequency to
describe eikr over [a, b].

To this end, the distance r is expressed with respect to the mid-
point τ0 ¼ ðaþbÞ=2 (see Fig. 2(a)) of the integration interval [a, b]
as follows ðτA ½a; b�Þ:

r¼ ζ�x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2oþδτ2�2roδτ cos ðθÞ

q
;

����
����

ro ¼ z�τo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτo�zÞðDabðτo�zÞþ2dÞþh2

q
;

����
����

δτ¼ τ�τo ¼ O
π
ηk

� �
;

����
���� ð19Þ

where ηZ5 is the number of elements per wavelength and θ is
the angle between z�τo and τ�τo. Expanding the distance r of
Eq. (19) into Taylor series with respect to δτ, one obtains

r¼ ro� cos ðθÞδτþ sin ðθÞ2
2ro

δτ2þOðδτ3Þ; ro4OðδτÞ;
r¼ OðδτÞ; rorOðδτÞ;
r¼ δτ; ro ¼ 0:

8>>><
>>>:

ð20Þ

Consequently, as τ varies by δτ¼Oðπ=ðηkÞÞ about τo within the
integration interval [a, b], r varies around ro by δr¼ OðδτÞ provided
ro is sufficiently large, i.e. ro4OðδτÞ. In the case where ro
approaches zero (say rrOðδτÞ), the total distance r scales as
OðδτÞ. Whence, kδr (or kr for small ro) behaves like Oðπ=ηÞ for
τA ½a;b�, which allows for the following asymptotic expansion:

eikr ¼ eikro 1þ ikδrþ⋯þ in

n
ðkδrÞnþ⋯

� �
; δr¼ r�ro;

τA ½a; b�; n¼ 0;1;…: ð21Þ
It is important to note that the right-hand side of Eq. (21)

provides a rapidly convergent series representation even with the
minimum required number of elements per wavelength, η¼ 5. As
explained above, due to proper scaling via the BEM discretization
procedure, the rate of convergence for the series does not depend
on the frequency of wave propagation, or other parameters. In

Section 6, we show that the expansion produces highly accurate
results evenwhen it is truncated at the 5th–6th term. As a result of
this asymptotic analysis, the integrals of Eq. (2)–(5) can be reduced
to the integrals of the following forms:

Ipqðz; a; bÞ ¼
Z
ℓab

rpðτ�zÞq dτ; r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτ�zÞðDabðτ�zÞþ2dÞþh2

q
;

ð22Þ

wherein p¼ 0;1, qZ�3 and ℓab denotes the straight path from
the point a to b. Analytical integration of Eq. (22) for p¼ 1 results
in the following closed-form expressions:

in which the results corresponding to qZ0 are omitted since they
are reported in [14] (see Eqs. (8.9), (8.11) of [14] for qZ0). The
results for the case p¼ 0 are straightforward and, therefore, are
not reported here. These results and expressions of Eq. (23) form a
complete library of integrals necessary and sufficient for analytical
integration of BEM representations in acoustic scattering over
planar elements whose boundaries can be described by a set of
straight segments.

5.2. Circular boundary segment

The complex equation associated with the circular arc ab
_

of
radius R centered at zc, shown in Fig. 2(b), is described by

τ�zcð Þ τ�zcð Þ ¼ R2; zc ¼ ðzcÞ1þ iðzcÞ2; ð24Þ

which allows for the following expression of the conjugated
variable:

τ ¼ zcþ
R2

τ�zc
: ð25Þ

Thus, the distance r can be expressed as a function of the single
variable τ as follows:

r¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ�zð Þ zc�zþ R2

τ�zc

 !
þh2

vuut : ð26Þ

As in previous case, the path-dependency of the line integrals
for non-holomorphic functions is expressed by Eqs. (24)–(26).
Analytical evaluation of Eq. (18) over the circular arc ab

_

is carried
out in the fashion described in Section 5.1 by invoking the same
requirement on the minimum number of elements par wavelength
η. The asymptotic expansion of eikr of Eq. (21) is employed wherein
the center of expansion τo is the mid-arc point (see Fig. 2(b)). The
procedure leads to the integrals of the following forms:

Jpqðz; a; bÞ ¼
Z
rab
rpðτ�zÞq dτ; p¼ 0;1; qZ�3; ð27Þ

where rab denotes the circular path from the point a to b, and r is
described by Eq. (26). The procedure of integrating Eq. (27) is as
follows.

For the case of z¼ zc , the distance r (for all τAab
_

) becomes
constant, i.e. r¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2þh2

p
. Hence, Jpqðz; a; bÞ of Eq. (27) reduces to a

Ipq z; a; bð Þ ¼

� 1

2t2h3
hrðh2þdtÞþt2ðd2�Dabh

2Þln t

h2þhrþtd

� �� �����
τ ¼ b

τ ¼ a
; q¼ �3;

� r
t
þ

ffiffiffiffiffiffiffiffi
Dab

p
ln �d�Dabtþ

ffiffiffiffiffiffiffiffi
Dab

p
r

h i
�d
h

ln
�t

h2þhrþtd

� � !�����
τ ¼ b

τ ¼ a

; q¼ �2;

rþh ln½t�þ dffiffiffiffiffiffiffiffi
Dab

p ln dþDabtþ
ffiffiffiffiffiffiffiffi
Dab

p
r

h i�����
τ ¼ b

τ ¼ a

; q¼ �1;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð23Þ
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set of elementary integrals [6] i.e.

Jpqðzc; a; bÞ ¼ ðR2þh2Þp=2
Z
rab
ðτ�zcÞq dτ

¼
1

qþ1
ðR2þh2Þp=2ðτ�zcÞqþ1

����
τ ¼ b

τ ¼ a
; qa�1

ðR2þh2Þp=2lnðτ�zcÞ
���τ ¼ b

τ ¼ a
; q¼ �1:

8>>><
>>>:

ð28Þ

In the case of zazc, the change of variable t ¼ ðτ�zcÞ=ðz�zcÞ,
remarkably simplifies the calculation procedure. In this case, r can
be recast as

r¼ jzj
ffiffiffiffiffiffiffiffi
gðtÞ
t

r
; z¼ zc�z; zazc; ð29Þ

where the real variables function g(t) is described by

gðtÞ ¼ t2þAtþB; A¼ h2þR2þjzj2
jzj2 ; B¼ R

jzj

� �2

:

Also, for the future reference, the roots of gðtÞ ¼ 0 which appear
in the final expressions are denoted by

χ1 ¼ 1
2 A�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2�4B

p� �
; χ2 ¼ 1

2 Aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2�4B

p� �
;

gð�χ1Þ ¼ gð�χ2Þ ¼ 0: ð30Þ

Considering Eq. (29), the integral of Eq. (27) can be recast as
follows:

Jpqðz; a; bÞ ¼ zqþ1jzjp
Z t2

t1

t2þAtþB
t

� �p=2

ðtþ1Þq dt; p¼ 0;1; �3rq; ð31Þ

where t1 ¼ ða�zcÞ=z and t2 ¼ ðb�zcÞ=z. The integrals associated
with p¼ 0 in Eq. (27) are elementary integrals, so henceforth, the
case p¼ 1 is considered. Moreover, the expressions corresponding
to p¼ 1 and qZ0 have already been reported in [14] (see Eq. (8.17)
of [14] for n¼0 and mZ0) and will not be reproduced here. The
final expression for the case p¼ 1 and qr0 has the following
form:

Jpq z; a; bð Þ ¼ zqþ1jzjp C0
qþC1

q EðtÞþC2
qFðtÞþC3

q PðtÞ
� ����t2 ¼ ðb� zcÞ=z

t1 ¼ ða� zcÞ=z
;

ð32Þ

where p¼ 1, �3rqo0 and the coefficients Cs
q for s¼ 0;…;3 are

as follows,

� q¼ �1:

C0
q ¼

2r
jzj; C1

q ¼ 2i
ffiffiffiffiffiffi
χ1

p
; C2

q ¼ 2i
ffiffiffiffiffiffi
χ1

p ðχ2�1Þ; C3
q ¼

2iχ3ffiffiffiffiffiffiχ1
p ; ð33Þ

� q¼ �2:

C0
q ¼ � r

jzjð1þtÞ; C1
q ¼ � i

ffiffiffiffiffiffi
χ1

p
; C2

q ¼ i
ffiffiffiffiffiffi
χ1

p ðχ2þ1Þ;

C3
q ¼ � iðB�1Þffiffiffiffiffiffiχ1

p ; ð34Þ

� q¼ �3:

C0
q ¼

rð1�2Aþ3BþðB�1ÞtÞ
4jzjχ3ð1þtÞ2

; C1
q ¼

iχ1ð1�2Aþ3BÞ
4χ3

;

C2
q ¼ � iχ1ðχ2ðχ4�2Aþ4Þþχ4Þ

4χ3
;

C3
q ¼

iðBð5�2Aþχ4Þ�1Þ
4χ3

ffiffiffiffiffiffiχ1
p ; ð35Þ

in which

EðtÞ ¼ E sin �1 i
ffiffiffiffiffiffi
χ1

t

r� �����χ2

χ1

� �
;

PðtÞ ¼Π
1
χ1

; sin �1 i
ffiffiffiffiffiffi
χ1

t

r� �����χ2

χ1

� �
;

FðtÞ ¼ F sin �1 i
ffiffiffiffiffiffi
χ1

t

r� �����χ2

χ1

� �
; χ3 ¼ A�B�1;

χ4 ¼ 1�2Aþ3B;

and F ϕjk� 
, E ϕjk� 

, and Π ℓ;ϕjk� 
are elliptic integrals of first,

second, and third kind defined as follows:

F ϕjk� ¼ Z ϕ

0
1�k sin 2θ
� ��1=2

dθ;

E ϕjk� ¼ Z ϕ

0
1�k sin 2θ
� �1=2

dθ;

Π ℓ;ϕjk� ¼ Z ϕ

0
1�ℓ sin 2θ
� �

1�k sin 2θ
� ��1=2

dθ:

6. Comparison of analytical and numerical integration results

The performance of the proposed approach is investigated in
this section. To this end, the generic integral of Eq. (11) is considered
for some specific combinations of the parameters, m¼ n¼ 0;1;2.
Then, the surface integrals over two specific planar elements shown
in Fig. 1(b, c) are evaluated both analytically, based on the proposed
method – whose associated closed-form solutions are provided in
Appendix A – and, numerically, by applying Gaussian quadrature
scheme which incorporates a large number of sampling points, so
that the resulting values are exact up to eight decimal places. For
numerical integration, the regularization procedure introduced in
[1, Chapter 3] is implemented. First, the surface variables ðζ1; ζ2Þ are
transformed to polar coordinates ðϱ;ϑÞ. Second, the Gaussian
quadrature is used with (50�50) sampling points to evaluate the
surface integrals. In the numerical experiments, the critical case
h¼0 is considered and z is chosen to be located either along the ray
Ozo or at certain fixed points zs, z¼1, 2, 3, 4 (see Fig. 1(b, c)). The
number of terms η in asymptotic expansion Eq. (21) is intentionally
set to be the minimum, i.e. η¼ 5;6.

The comparison between the numerical and analytical results
for the generic integral of Eq. (11) with m¼ n¼ 0 is reported in
Table 1 for the triangular element. The same results for the circular
sector are reported in Table 2. The locations of four specific field
points are illustrated in Fig. 1(b, c). Moreover, the reported error is

Table 1
Comparison of numerical and analytical integration (triangular element) for η¼ 5.

I00ðz; S▵Þ z1 ¼ 0 z2 ¼ 0:25þ0:25i z3 ¼ 0:5þ0:5i z4 ¼ 0:75þ0:75i

Numerical 1:1444þ0:4214i 2:3062þ0:4330i 1:6866þ0:4306i 0:6683þ0:4145i
Analytical 1:1444þ0:4214i 2:3103þ0:4330i 1:6896þ0:4306i 0:6683þ0:4145i
E½I00ðz; S▵)] 0.01% 0.17% 0.17% 0.01%
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calculated as follows:

E½Imnðz; SÞ� ¼ 100� jNum:ðImnÞj�jAnal:ðImnÞj
jNum:ðImnÞj

:

To observe the spacial variation, the integration is performed
along the ray Ozo and shown in Figs. 3 and 4 for three parameter
combinations m¼n¼0, m¼n¼1, m¼n¼2 (respectively rows one
to three).

7. Concluding remarks

The approach presented in this paper allows for analytical evalua-
tion of the basic integrals involved in three-dimensional integral
representations for the Helmholtz equation. The boundary elements
are considered to be planar, bounded by straight segments or, circular
arcs, while the unknown fields are described using polynomial

approximation. The use of complex representation and complex
analysis leads to the reduction of all the basic integrals to the generic
integral and its derivatives with respect to specific parameters. The
final closed-form expressions are achieved using proposed asymptotic
expansion of the oscillatory part of the kernel in the generic integral.
The expansion is based on the requirement of the minimum number
of elements per wavelength. It is demonstrated that the series is
rapidly convergent, and the rate of convergence does not depend on
the frequency of wave propagation or any other parameters. The
analytical results are compared to those obtained numerically using
extensive number of Gauss points in the Gauss-Quadrature method.
The numerical experiments showed that the generic integral can be
accurately evaluated with reasonable computational effort for various
planar elements. The proposed approach can be employed to create
integration subroutines or functions that can be used as black boxes
by the developers of the BEM-based software. We believe that the
technique could be extended to elastodynamics in a straightforward

Table 2
Comparison of numerical and analytical integration (circular sector) for η¼ 6.

I00ðz; S○Þ z1 ¼ 0 z2 ¼ 0:35þ0:35i z3 ¼ 0:7071þ0:7071i z4 ¼ 1:0þ1:0i

Numerical 1:3758þ0:6477i 2:9538þ0:6778i 1:9662þ0:6649i 0:7107þ0:6222i
Analytical 1:3758þ0:6477i 2:9561þ0:6778i 1:9662þ0:6649i 0:7107þ0:6222i
E½I00ðz; S○Þ� 0.01% 0.0762% 0.01% 0.01%

Fig. 3. Analytical (solid line) vs. numerical (circular dots) integration over S▵ (depicted in Fig. 1(b)) and, its corresponding error percent for Imnðz; S▵Þ defined by Eq. (12)
where zAOz○ (see Fig. 1(b)).
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fashion. Using the method, it is effortless to adapt available codes
developed for solving static problems to tackle dynamic problems by
simply adding the new integrals introduced in this paper to the library
of generic integrals. The analytical expressions obtained here for
three-dimensional problems could be used for the area integrals
associated with body force terms involved in the corresponding
two-dimensional BEM formulations with non-zero body forces. They
could also be useful in developing multipole expansions employed in
fast multipole methods. The future work may include the use of non-
planar (isoparametric) elements, as well as planar elements bonded
by some other elementary curves. The use of different approximating
functions for the unknowns could also be investigated.

Acknowledgment

The support from the Theodore W. Bennett Chair, University of
Minnesota, is kindly acknowledged. Special thanks are extended to
Professor Bojan Guzina for the constructive discussions during the
course of this investigation.

Appendix A. Closed-form solution of Imnðz; S▵Þ and Imnðz; S○Þ

A.1. Analytical integration of Imnðz; S▵Þ

To illustrate the implementation of the proposed method, the
calculation procedure, and its results, analytical expressions of the

integral Imn reported in Table 1 and, Fig. 3, i.e. m¼n¼0, m¼n¼1,
m¼n¼2, are presented below:

Evaluation of I00ðz; S▵Þ: In the case where m¼n¼0 and z=2S▵
where S▵ is the right triangle shown in Fig. 1(b). Using Eqs. (12)
and (15), the following identity is attained:

I00ðz; S▵Þ ¼
Z
S▵

1
r
eikr dS▵¼ 1

k

Z
∂S▵

eikr

τ�z
dτ; ðA:1Þ

where the contour ∂S▵ consists of linear segments ℓab, ℓbc and ℓca
along with vertices a¼ 0, b¼ 1 and c¼ i. One should note that the
free term of Eq. (12) vanishes when z=2S▵. In view of the
asymptotic expansion for eikr in Eq. (21), the integral of Eq. (A.1)
along the linear segment ℓab can be recast as

1
k

Z
ℓab

eikr

τ�z
dτ¼ eik rab○ ∑

5

n ¼ 0

inkn�1

n!

Z
ℓab

1
τ�z

ðr�rab○ Þn dτ; ðA:2Þ

in which rab○ ¼ jz�τab○ j, with τab○ being the mid-point of segment
ℓab, i.e. τab○ ¼ ðaþbÞ=2. By substituting the well-known binomial
theorem

ðr�rab○ Þn ¼ ∑
n

m ¼ 0

n!
m!ðn�mÞ!ð�rab○ Þn�m rm; 5ZnZ0; ðA:3Þ

into Eq. (A.2), and performing similar calculations for the remain-
ing segments ℓbc and ℓca, one may complete the contour integra-
tion over ∂S▵ in Eq. (A.1) and, arrive at the closed-form solution

Fig. 4. Analytical (solid line) vs. numerical (circular dots) integration over S○ (depicted in Fig. 1(c)) and, its corresponding error percent for Imnðz; S○Þ defined by Eq. (12)
where zAOz○ (see Fig. 1(c)).
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for I00,

I00ðz; S▵Þ ¼ ∑
5

n ¼ 0

inkn�1

n!
∑
n

m ¼ 0

ð�1Þn�m n!
m!ðn�mÞ! eikr

ab
○ ðrab○ Þn�m Imsðz; a; bÞ

n
þeik rbc○ ðrbc○ Þn�mImsðz; b; cÞ
þeik rca○ ðrca○ Þn�mImsðz; c; aÞ

o
; z=2S▵ ðA:4Þ

where s¼ �1, rbc○ and rca○ are described – similar to rab○ definition – as

rbc○ ¼ z�τbc○ ; τbc○ ¼ bþc
2

; rca○ ¼ z�τca○ ; τca○ ¼ aþc
2

:
����������

���� ðA:5Þ

Recall that Ims is precisely defined by Eq. (22) whereby the
following recursive identities are extracted for s¼ �1:

I2sðz; a; bÞ ¼ h2I0sðz; a; bÞþ2dðb�aÞþDabI01ðz; a; bÞ;
I3sðz; a; bÞ ¼ h2I1sðz; a; bÞþ2dI10ðz; a; bÞþDabI11ðz; a; bÞ;
I4sðz; a; bÞ ¼ h4I0sðz; a; bÞþ4dh2ðb�aÞþð4d2þ2h2DabÞI01ðz; a; bÞ

þ4dDab I02ðz; a;bÞþD2
ab I03ðz; a; bÞ;

I5sðz; a; bÞ ¼ h4I1sðz; a; bÞþ4dh2I10ðz; a; bÞþð4d2þ2h2DabÞI11ðz; a; bÞ

þ4dDabI12ðz; a; bÞþD2
abI13ðz; a; bÞ: ðA:6Þ

It is apparent that a and b in the expressions of Eq. (A.6) are
dummy variables, and these expressions are valid for any straight
segment. It must be mentioned that the integrals I0q with qZ�1
are regarded as known as they only involve integration of basic
functions e.g. polynomials. Moreover, the integral I1s ðs¼ �1Þ is
provided by Eq. (23), and the integrals I1q for qZ0 can be found in
Eqs. (8.8)–(8.11) of [14]. This completes the construction of the
analytical expression for the integral I00 of Eq. (A.4).

Analytical solution of I11ðz; S▵Þ and I22ðz; S▵Þ: The integral Imn is
computed (for m¼n¼1, 2) following similar steps as in Eqs. (A.1)–
(A.4), resulting in the analytical expressions presented below:

I11ðz; S▵Þ ¼
Z
S▵

jτ�zj2
r

eikr dS▵¼ 1

k3
A0k I00ðz; S▵Þþ ∑

2

σ ¼ 1
Aσ

Z
∂S▵

rσ

τ�z
eikr dτ

( )
; z=2S▵;

I22ðz; S▵Þ ¼
Z
S▵

jτ�zj4
r

eikr dS▵¼ 1

k5
B0k I00ðz; S▵Þþ ∑

4

σ ¼ 1
Bσ

Z
∂S▵

rσ

τ�z
eikr dτ

( )
; z=2S▵;

ðA:7Þ
where

A0 ¼ �k2h2�2; A1 ¼ 2ik; A2 ¼ k2; B0 ¼ 24þ4k2h2þk4h4;

B1 ¼ �4ikð6þh2k2Þ; B2 ¼ �2k2ð6þh2k2Þ; B3 ¼ 4ik3; B4 ¼ k4:

ðA:8Þ
By invoking expansions of Eqs. (21) and (A.3), the contour

integral in Eq. (A.7) is analytically evaluated as follows:
Z
∂S▵

rσ

τ�z
eikr dτ¼ ∑

5

n ¼ 0

inkn

n
∑
n

m ¼ 0

ð�1Þn�mn!
m!ðn�mÞ! eik rab○ ðrab○ Þn�mIðmþσÞsðz; a; bÞ

n

þeik rbc○ ðrbc○ Þn�mIðmþσÞsðz; b; cÞþeik rca○ ðrca○ Þn�mIðmþσÞsðz; c; aÞ
o
;

� s¼ �1;σZ1ð Þ: ðA:9Þ
It is straightforward to generalize Eq. (A.6) to obtain recursive

formulae for the integrals Iqs for s¼ �1, qZ5. For instance, the
case I6s is illustrated below:

I6sðz; a; bÞ ¼ h6I0sðz; a; bÞþ6dh4ðb�aÞþð12d2
h2

þ3h4DabÞI01ðz; a; bÞþð12dh2Dabþ8d
3Þ

� I02ðz; a; bÞþð12d2
Dabþ3h2D2

abÞI03ðz; a; bÞ
þ6dD2

abI04ðz; a; bÞþD3
abI05ðz; a; bÞ: ðA:10Þ

That completes the integrations of Eq. (A.7).
For the cases under consideration, appropriate free terms

should be added to expressions in Eq. (A.4) when zAS▵ or,

zA∂S▵. These terms are

m¼ n¼ 0 :

2πi
k

eikjhj; zAS

γi
k

eikjhj; zA∂S

8>><
>>: ðA:11Þ

The corresponding terms for Eq. (A.7) are

m¼ n¼ 1 :
4πi

k3
eikjhjðik h �1Þ; zAS

2γi

k3
eikjhjðik h �1Þ; zA∂S

��������
����

�

m¼ n¼ 2 :
16πi
k5

eikjhjð3�3ik h �k2h2Þ; zAS
8γi
k5

eikjhjð3�3ik h �k2h2Þ; zA∂S
����������

����
�

ðA:12Þ
where γ is defined in Eq. (13).

A.2. Analytical integration of Imnðz; S○Þ

This section provides closed-form expressions affiliated with
the integrals of Fig. 4 and Table 2. Analytical solution of the
integral Imnðz; S○Þ over the circular sector S○ illustrated in
Fig. 1(c) is simply achieved by replacing S▵ by S○ in Eqs. (A.1)
and (A.7), e.g. for m¼n¼1,

I11ðz; S○Þ ¼
Z
S○

jτ�zj2
r

eikr dS○ ¼ 1

k3
A0k I00ðz; S○Þþ ∑

2

σ ¼ 1
Aσ

Z
∂S○

rσ

τ�z
eikr dτ

� �
; z=2S○:

ðA:13Þ
These equations stem from Eqs. (12) and (15), as demonstrated

in the first part of A.1. The crucial part, however, is to describe the
contour integralZ
∂S○

rσ

τ�z
eikr dτ; σ ¼ 0;1;…;4: ðA:14Þ

By invoking the asymptotic expansion equation (21) and the
binomial theorem of Eqs. (A.3), one arrives at the following:Z
∂S○

rσ

τ�z
eikr dτ¼ ∑

5

n ¼ 0

inkn

n!
∑
n

m ¼ 0

ð�1Þn�m n!
m!ðn�mÞ! eik rab○ ðrab○ Þn�m IðmþσÞsðz; a; bÞ

n

þeik rbc
_

○ ðrbc
_

○ Þn�m JðmþσÞsðz; b; cÞþeik rca○ ðrca○ Þn�m IðmþσÞsðz; c; aÞ
�
;

� s¼ �1;σZ0ð Þ: ðA:15Þ
wherein rbc

_

○ ¼ jz�τbc
_

○ j defined for circular segment bc
_

, with τbc
_

○
being the mid-arc point shown in Fig. 1(c); Jqsðz; b; cÞ is intro-
duced by Eqs. (26)–(27) whose solution for q¼1 is given by
Eq. (33), and for q¼0 is considered as known due to the
elementary nature of its corresponding integral. In cases where
qZ1, recursive equations are used in the same fashion as
described by Eqs. (A.6) and (A.10), i.e.

J2sðz; a; bÞ ¼ h2 J0sðz; a; bÞþðzc�zÞðb�aÞþR2J0sðzc; a; bÞ;
J3sðz; a; bÞ ¼ h2 J1sðz; a; bÞþðzc�zÞJ10ðz; a;bÞþR2J1sðzc; a;bÞ;
J4sðz; a; bÞ ¼ h4J0sðz; a; bÞþ2ðh2þR2Þðzc�zÞðb�aÞþR2ðR2þ2h2

þ2jzc�zj2ÞJ0sðzc; a;bÞþðzc�zÞ2J01ðz; a; bÞþR4ðzc�zÞJ0ðs�1Þðzc; a; bÞ;

J5sðz; a; bÞ ¼ h4J1sðz; a; bÞþ2ðh2þR2Þðzc�zÞJ10ðz; a; bÞþR2ðR2þ2h2

þ2jzc�zj2ÞJ1sðzc; a;bÞþðzc�zÞ2J11ðz; a; bÞþR4ðzc�zÞJ1ðs�1Þðzc; a; bÞ;
ðA:16Þ

derived using Eq. (26). Recall that for s¼ �1, the integral J1ðs�1Þ is
given by Eq. (34). Furthermore, the integrals J10 and, J11 can be
found in Eqs. (8.17)–(8.21) of [14]. It should be mentioned that
Jqsðz; b; cÞ for qZ6 can be expressed in the same recursive manner.
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